Internet site 1 
Internet site 2 

HOME takes you to the start page after you have read these Topics. Start page has links to other topics.
1. a free Modelica Library for Power Systems, suitable for the simulation and analysis of transient and voltage stability in power systems.
2. TEFTS free software transient stability program to study transient energy functions and voltage stability issues includes example & a brief tutorial
TRANSIENT STABILITY OBJECTIVE TYPE QUESTIONS
Ans.: ©
Ans.: (b)
(a) positive
(b) zero
Ans.: (a)
Ans.: (c )
Inertia Constant H:
Inertia constant H is different from inertia constant M. For a synchronous machine inertia constant H is frequently specified. It is defined as the ratio of the stored K.E at rated speed to the rated apparent power of the machine, i.e.
H= Stored K.E in MJ at synchronous speed / machine rating in MVA (5)
Swing equation (4) reduces to the form
(2H/ws) d^{2}d /dt^{2}= Pm Pe
where Pm and Pe are pu powers, d and ws should have consistent units
Linearization of swing equation For small perturbations, the dynamic behaviour of the system can be studied by linearising the swing equations around the nominal operating point. The linearised swing equation is
d^{2}D d /dt^{2 }+ w s . S. D d = 0 2H where D d = small change in nominal operating angle d S = Synchronizing power coefficient = d Pe (at d = d o) dd 

Equal area criterion (EAC) of stability
To determine whether a power system is stable after a disturbance, it is necessary, in general, to plot and inspect the swing curves. If these curves show that the angle between any two machines tends to increase without limit, the system of course is unstable. If, on the other hand, after all the disturbances including switching have occurred, the angles between the two machines of every possible pair reach maximum values and thereafter decrease, it is probable, although not certain, that the system is stable. Occasionally in a multimachine system one of the machines may stay in step on the first swing and yet go out of step on the second swing because the other machines are in different positions and react differently on the first machines.
In a twomachine system, under the usual assumptions of constant input, and constant voltage behind transient reactance, the angle between the machines either increases indefinitely or else, after all disturbances have occurred, oscillates with constant amplitude. In other words the two machines either fall out of step on first swing or never. Under these conditions the observation that the machines come to rest with respect top each other may be taken as the proof that the system is stable. There is a simple graphical method of determining whether the machines come to rest with respect to each other. This method is known as the equal area criterion of stability. When this criterion is applicable its use wholly or partially eliminates the need of computing swing curves and thus saves considerable amount of computation time. It is applicable to any twomachine system for which the assumptions stated above may be made.
Consider a machine infinite bus system. The swing equation of the system is
M d^{2}d /dt^{2}= Pm Pe = Pa
Multiplying both sides of the equation by (2/M) dd /dt, we get
2 dd /dt .d^{2}d /dt^{2}= (2Pa/M) dd /dt (6)
Since dd /dt. (dd /dt)^{2} = 2 dd /dt .d^{2}d /dt^{2,}
Equation (6) reduces to
dd /dt. (dd /dt)^{ 2 }= (2Pa/M) dd /dt
Next, multiply each side by dt, obtaining
d[. (dd /dt)^{ 2}]= (2Pa/M) dd
Integrating this equation, we get
d
(dd /dt)^{ 2 }= (2/M) ƒ Pa dd
d o
d
(dd /dt)^{ 2 }= Ö [(2/M) ƒ Pa dd ]
d o
When the machine comes to rest with respect to the infinite bus a condition, which may be taken to indicate stabilityrequiring that
d m
ƒ Pa dd =0
d o
This integral may be integrated graphically (Fig.9) as the area under a curve of Pa plotted against d between limits d o, the initial angle, and d m, the final angle. Area A1 and A2 may be interpreted in terms of kinetic energy gained /lost by the synchronous generator.
Illustrate the application of equal area criterion by applying it (to the following two simple cases) for a synchronous generator connected to infinite bus through a doublecircuit line.
Of a twomachine system is defined as the maximum power that can be transmitted from one machine to the other without loss of synchronism for a specified, sudden, severe, unrepeated shock.
Illustrate the concept of transient stability limit using equal area criterion of stability.
Numerical technique for solution of swing equation
The transient stability analysis requires the solution of a system of coupled nonlinear differential equations. In general, no analytical solution of these equations exists. However, techniques are available to obtain approximate solution of such differential equations by numerical methods and one must therefore resort to numerical computation techniques 9commonly known as digital simulation0. Some of the commonly used numerical techniques for the solution of the swing equation are:
Point by point method
Point by point solution, also known as stepbystep solution is the most widely used way of solving the swing equation. The following two steps are carried out alternately.
There are two different pointbypoint methods. Method 2 is more accurate compared to method 1.
Method 2
In this method the accelerating power during the interval is assumed constant at its value calculated for the middle of the interval.
The desired formula for computing the change in d during the n^{th }time interval is
D d n =D d n1 + [(D t)^{ 2 }/M] Pa(n1)
where,
D d n = change in angle during the n^{th }time interval
D d n1 = change in angle during the (n1)^{th }time interval
D t= length of time interval
Pa(n1)= accelerating power at the beginning of the nth^{ }time interval
Due attention is given to the effects of discontinuities in the accelerating power Pa which occur, for example, when a fault is applied or removed or when any switching operation takes place. If such a discontinuity occurs at the beginning of an interval, then the average of the values of Pa before and after the discontinuity must be considered. Thus, in computing the increment of angle occurring during first interval after a fault is applied at t=0, the above equation becomes:
D d 1 =[(D t)^{ 2 }/M] Pa0+/2
where Pa0+ is the accelerating power immediately after the occurrence of the fault.
If the fault is cleared at the beginning of the m^{th }interval, then for this interval,
Pa(m1) = 0.5 [Pa(m1)^{} + Pa(m1)^{ +}]
Where Pa(m1)^{ }is the accelerating power before clearing and Pa(m1)^{ +} is that immediately after clearing the fault.. If the discontinuity occurs at the middle of the interval, no special treatment is needed.
Improvement of power system stability
System parameters affecting stability:
Discrete Controls:
Fast Valving
Discuss the effect of variation of M and auto reclosure on the transient stability limit