## POWER SYSTEMS LABORATORY

### **MEASUREMENTS OF ABCD CONSTANTS OF A TRANSMISSION LINE**

### **Objective:**

- 1. To determine the ABCD constants, characteristic impedance and propagation constant
- 2. To determine the shunt compensation to counteract the voltage rise on no load
- 3. To determine the voltage profile along the line with and without shunt compensation
- 4. To determine the reactive power required for zero regulation at different loads.

### **Introduction:**

Long lines cause special problems in power systems. The voltage at the receiving end may rise, on no load or light load, beyond permissible limits; but on load the voltage may drop below normal. The phase shift may become excessively large and lead to stability problems. The no-load current may be large, if not compensated, and introduce some of the problems associated with long lines.





### **Theory:**

Since a transmission line is symmetrical, the measurement of the open circuit and short circuit impedances is enough to determine the ABCD constants.

Open - circuiting the load end of the line, the open circuit impedance is measured at the sending end as

$$\mathbf{Zoc} = \mathbf{A}/\mathbf{C} \tag{1}$$

Short circuiting the load end of the line, the short circuit impedance Zsc is measured at the sending end as

$$\mathbf{Zsc} = \mathbf{B}/\mathbf{A} \tag{2}$$

For a symmetrical network,

$$\mathbf{A} = \mathbf{D} \tag{3}$$

For a passive network,

### $\mathbf{AD} \cdot \mathbf{BC} = 1 \tag{4}$

Substituting equation (3) in equation (4),

$$\mathbf{A}^2 - \mathbf{B}\mathbf{C} = 1 \tag{5}$$

Using equations (1)-(5), we get

$$\mathbf{A} = \left(\frac{\mathbf{Zoc}}{\mathbf{Zoc} - \mathbf{Zsc}}\right)^{1/2}$$
(6)  
$$\mathbf{B} = \mathbf{A}.\mathbf{Zsc.}$$
(7)

$$\mathbf{C} = \mathbf{A} / \mathbf{Zoc} \tag{8}$$

Note that all parameters A, B, C, D and the measured quantities Zoc and Zsc are complex numbers

#### Part I

- **1.** Connect the transmission line model as in Fig. 1 to represent a single-phase, long transmission line, by connecting two cable lengths in series and two 60-microfarad capacitors as shown.
- 2. Apply 110 V or less to measure Zoc

| $\mathbf{Zoc} = \mathbf{Zoc} \angle \mathbf{\theta}$ | (9)  |
|------------------------------------------------------|------|
| Zoc = Vs/Is                                          | (10) |
| $\cos \theta = Ws/(Vs Is)$                           | (11) |

(Note: A phase angle meter or an oscilloscope also can measure the phase angle if a low power factor wattmeter is not available)

Calculate **Zoc** as a phasor.

**3.** For measuring **Zsc**, pass a current of 6 A or less (Note: This requires low voltage!). Calculate **Zsc** as phasor from equations similar to (9)-(11).

4. Calculate **ABCD** constants as phasors from equations (6)-(8).

5. Determine the surge impedance **Zo** and propagation constant  $\gamma$  l as phasors from the following equations;

(Note that 1 is the length of the line, and,  $\gamma = \alpha + j\beta$ )

| $\mathbf{Zo} = \mathbf{Sqrt} \ (\mathbf{B/C})$ | (12) |
|------------------------------------------------|------|
| $\boldsymbol{\gamma}$ l=Cosh <sup>-1</sup> (A) | (13) |

6. Comment on the magnitude and angle of A and angle of Zoc and the total phase shift

# Part II:

1. Open circuit the receiving end

2. Adjust the sending- end voltage to 110 V. Note the receiving - end voltage.

3. Introduce the compensation equipment and adjust its L and C till the receiving end voltage also reaches 110 V. (Vs = Vr)

4. Note the current taken by the compensator (which includes L and C in parallel) and determine its Var rating and its ohmic value

# Part III:

- **1.** With the adjustments as in 3 above, measure the voltages at the sending end, midpoint and receiving end of the line.
- **2.** Disconnect the compensation equipment. Maintain Vs = 110 V.
- 3. Again measure the voltages at the sending end, midpoint and receiving end of the line.

4. Plot the voltage profiles with and without the compensation equipment and compare the results.

# **Part IV:**

- 1. Disconnect the low power factor wattmeter at the sending end and connect a voltmeter, ammeter, and wattmeter and RC loading unit at the receiving end. (Note that an RL or an RLC loading unit may also be used.)
- 2. Adjust the loading resistor to take a power of 200, 300 and 400 W respectively.
- 3. For each value of power, adjust C (or L)of the compensation unit to make Vr = 110 V
- 4. For each value of power, determine  $\pm$  Qr, the reactive power to obtain the condition Vr = Vs = 110 V

5. Plot the results in the P-Q plane. What is the approximate shape of the curve?

6. Comment on the results

7. What are the uses of shunt reactors, capacitors and synchronous condensers in power systems?